当前位置:黑龙江地方站首页 > 龙江新闻 > 正文

重庆市星宸整形营业时间健康频道重庆中医骨科医院治疗痘痘多少钱

2019年12月15日 19:45:03    日报  参与评论()人

重庆专业祛疤医院武隆区妇幼保健院属于私人医院吗3.Newspapers3.报刊雏形The Romans were known to contribute to public discourse through the use of official texts detailing military, legal and civil issues. Known as Acta Diurna, or ;daily acts,; these early newspapers were written on metal or stone and then posted in heavily trafficked areas like the Roman Forum. Acta are believed to have first appeared around 131 B.C. and typically included details of Roman military victories, lists of games and gladiatorial bouts, birth and death notices and even human interest stories. There was also an Acta Senatus, which detailed the proceedings of the Roman senate. These were traditionally withheld from public view until 59 B.C., when Julius Caesar ordered their publication as part of the many populist reforms he instituted during his first consulship.古罗马会发布《罗马公报》(或称《每日纪闻》),里面会涉及到处理军事、法律和民事的问题,让民众通过文章了解这些事项的结果;这些内容,会写在金属或刻在石头上,放在诸如古罗马广场这样的闹市区,供民众浏览,这便是报纸雏形。据考,《罗马公报》最早出现于公元前131年,设及内容相当广泛,包括罗马军事捷报、比赛事项、格斗回合场次、出生喜讯和讣告等,甚至还会写些民众喜欢的故事。此外还有《元老院记事录》,用来记录罗马元老院会议的讨论和决议,虽然也算报纸雏形,但其内容保密,禁止公诸于众。直到公元前59年,古罗马执政官尤列乌斯·凯撒(Julius Caesar)在第一任期内实行民主改革,下令公布元老院及公民大会的议事记录,这些内容才得以流传开来。2.Concrete2.混凝土Many ancient Roman structures like the Pantheon, the Colosseum and the Roman Forum are still standing today thanks to the development of Roman cement and concrete. The Romans first began building with concrete over 2,100 years ago and used it throughout the Mediterranean basin in everything from aqueducts and buildings to bridges and monuments. Roman concrete was considerably weaker than its modern counterpart, but it has proved remarkably durable thanks to its unique recipe, which used slaked lime and a volcanic ash known as pozzolana to create a sticky paste. Combined with volcanic rocks called tuff, this ancient cement formed a concrete that could effectively endure chemical decay. Pozzolana helped Roman concrete set quickly even when submerged in seawater, enabling the construction of elaborate baths, piers and harbors.罗马混凝土的出现使得许多古罗马建筑,诸如万神庙、斗兽场、古罗马广场屹立至今。罗马人首次利用混凝土建造房屋大约源于2100年前,那时,混凝土被广泛应用于地中海地区所有的建筑中,包括引水渠、桥梁以及纪念碑等等。罗马混凝土在强度上远不如现代混凝土,但罗马混凝土独特的成分使其更加持久耐用。罗马混凝土是罗马人利用熟石灰和一种在维苏威火山地区发现的粉尘物(Pozzolana)与水混合制成的具有高粘性的糊状物。加入了火山凝灰岩的罗马混凝土具有超强的抗化学腐蚀性,而维苏威火山地区的粉尘物(Pozzolana)使得罗马混凝土即使在海水中也能够迅速凝结硬化,得益于此,罗马人精心建造了浴场、码头和港口。1.Aqueducts1.引水渠The Romans enjoyed many amenities for their day, including public toilets, underground sewage systems, fountains and ornate public baths. None of these aquatic innovations would have been possible without the Roman aqueduct. First developed around 312 B.C., these engineering marvels used gravity to transport water along stone, lead and concrete pipelines and into city centers. Aqueducts liberated Roman cities from a reliance on nearby water supplies and proved priceless in promoting public health and sanitation. While the Romans did not invent the aqueduct—primitive canals for irrigation and water transport existed earlier in Egypt, Assyria and Babylon—they used their mastery of civil engineering to perfect the process. Hundreds of aqueducts eventually sprang up throughout the empire, some of which transported water as far as 60 miles. Perhaps most impressive of all, Roman aqueducts were so well built that some are still in use to this day. Rome#39;s famous Trevi Fountain, for instance, is supplied by a restored version of the Aqua Virgo, one of ancient Rome#39;s 11 aqueducts.古罗马拥有大量的公共设施,诸如公厕、地下排污系统,喷泉和公共浴池等等,大大方便了罗马人的生活。但是如果没有罗马引水渠的发明,一切与水有关的创新设施都将无法实现。第一条引水渠建造于公元前312年,在重力作用下,以石管、铅管和陶管作为输水管道把水引入城区。引水渠解决了罗马城的用水问题,对城市公共健康和卫生设施的发展也发挥了极其重要的作用。在引水渠出现之前,埃及、巴比伦和亚述人用原始运河引水灌溉,而罗马人则利用土木工程技术对运河进行改进,从而发明了引水渠。罗马帝国时期,数百条引水渠遍布整个帝国,其中一些水渠甚至长达60英里。水渠的伟大之处在于其历经千年岿然不动,时至今日,部分水渠仍在发挥作用,令人叹为观止。罗马著名的特莱维喷泉(Trevi Fountain)正是位于古罗马十一条大型水渠之一的维戈水渠(Aqua Virgo)的水源所在地。审校:省略珺 橘子 /201507/387725合川区治疗疤痕多少钱 Could we be just two or three years away from curing cancer? Niven Narain, the president of Berg, a small Boston-based biotech firm, says that may very well be the case.我们是否真的在两三年之后,就能实现治愈癌症的愿景?波士顿小型生物科技公司Berg的总裁尼文o纳雷因表示,可能真是这样。With funding from billionaire real-estate tycoon Carl Berg as well as from Mitch Gray, Narain, a medical doctor by training, and his small army of scientists, technicians, and programmers, have spent the last six years perfecting and testing an artificial intelligence platform that he believes could soon crack the cancer code, in addition to discovering valuable information about a variety of other terrible diseases, including Parkinson’s.凭借亿万富翁、房地产业大鳄卡尔o伯格和米奇o格雷提供的资金,纳雷因和他带领的科学家、技术人员和编程人员团队耗时6年,完善并测试了一个人工智能平台,纳雷因认为,这个平台可能很快就会解开癌症的密码,同时为治疗包括帕金森症在内的一系列严重疾病提供有价值的信息。Thanks to partnerships formed with universities, hospitals, and even the U.S. Department of Defense, Berg and its supercomputers have been able to analyze thousands of patient records and tissue samples to find possible new drug targets and biomarkers.凭借着跟多所大学、医院甚至美国国防部建立的合作关系,伯格公司及其超级计算机系统已经分析了成千上万的病历和组织样本,以找到有可能全新的药物靶标和生物标志。All this data crunching has led to the development of Berg’s first drug, BPM 31510, which is in clinical trials. The drug acts by essentially reprogramming the metabolism of cancer cells, re-teaching them to undergo apoptosis, or cell death. In doing so, the cancer cells die off naturally, without the need for harmful and expensive chemotherapy.经过庞大的数据计算,伯格公司开发出第一款新药——BPM 31510,目前该药已经进入临床测试阶段。它可以重组癌细胞的新陈代谢,重新教会癌细胞如何死亡。在这个过程中,癌细胞就会自然死亡,使患者不必经历对身体伤害极大又十分昂贵的化疗过程。So far, Berg has concentrated most of its resources on prostate cancer, given the large amount of data available on the disease. But thanks to recently announced partnerships, the firm is now building a new modeltargeting pancreatic cancer, which is one of the deadliest forms of cancers with a survivorship rate of only 7%.到目前为止,伯格公司的主要资源都集中在前列腺癌上,因为目前有大量关于前列腺癌的数据可供研究。不过拜一项最新合作所赐,该公司现在已经开始构建针对胰腺癌的新模型了。胰腺癌也是最凶险的癌症之一,目前的存活率只有7%。Ambitious as that may be, it is really just the tip of the iceberg. In addition to mapping out prostate and pancreatic cancer, Berg hopes to analyze data from a whole host of other diseases, including breast cancer. Additionally, Berg thinks his company’s artificial intelligence platform can also revolutionize drug testing by creating individualized patient-specific treatment options, which he believes will ultimately reduce the risk of adverse drug interactions in clinical trials and hospitals by a significant degree.这个目标本身可谓雄心勃勃,但它还只是冰山的一角。除了治疗前列腺癌和胰腺癌之外,伯格公司还希望分析多种其它疾病的数据,包括乳腺癌。另外,伯格公司还认为,它的人工智能平台可以根据病人的特异性制定专门针对个别患者的治疗方案,从而将掀起一场药物测试的革命,并显著降低药物的负面作用在临床实验和医疗实践中的风险。I sat down with Berg and Narain to discuss how the company works and what they hope to accomplish in the next few years. The following interview has been edited for publication.我采访了卡尔o伯格和纳雷因,探讨了该公司的工作机制,以及他们在未来几年内的目标。以下是采访摘要。Fortune: Carl, why did you decide to move from real estate into healthcare and has it panned out like you thought it would?财富:卡尔,你为什么选择从房地产业转向医疗行业?它的进展是否符合你的预期?Carl Berg: I have been in the venture capital business for 40 years but I never once touched biotech because I was concerned about the risk associated with government approval – it’s bad enough when you’re doing venture capital but adding one more equation, like getting approval from the FDA [Food and Drug Administration] makes it a lot harder. But about eight years ago I said, instead of getting into a whole bunch of small companies, I am in a position now where I can do something really big in a hope that it changes the world. So that’s what motivated me, and then I met with Niven, and that’s what got it started.卡尔o伯格:我已经在风投界干了40年了,但我从来没有触碰过生物科技领域,因为我担心与政府审批有关的风险。做风投本身就不容易,又要多花一番工夫去获得美国食品药品监督的认,那就会更难。但大概8年前我曾说过,现在我不必再做一堆小公司了,而是有能力做一些影响力足够大甚至有希望改变世界的事。这个目标激励了我,然后我认识了尼文,我们就是这样开始这项事业的。Did Niven convince you to go into biotech or did you find Niven?是尼文说了你进入医疗行业,还是你找到了尼文?CB: I was considering a skin care product investment and I was introduced to Niven at the University of Miami. Niven was the project manager and about a couple months into work on this product, Niven called me and said “Carl, this skin care product appears to have an effect on cancer.” To which I said “Sure, whenever you cure somebody, let me know.”卡尔o伯格:当时我正考虑投资一款护肤产品,然后我在迈阿密大学经人介绍认识了尼文。尼文当时是那个项目的经理,那个项目开始大约一两个月后,尼文给我打电话说:“卡尔,这款护肤产品似乎对治疗癌症有效。”我说:“好吧,如果你治好了谁,记得让我知道。”You didn’t sound very convinced.你听起来好像不太相信。CB: Everybody knows that every cancer is different, so how could this one thing work? That didn’t make any sense to me. And Niven said, “Can I fly out to California and show you my results?” And he came out, and we talked, and I got convinced that the technology he was using and the approach he was taking, could revolutionize the pharmaceutical market.卡尔o伯格:人人都知道,每种癌症都是不一样的,那么这个东西怎么会有效呢?在我看来根本就说不通。这时尼文说:“我能飞到加州向你展示一下我的成果吗?”然后他就来了,经过一番交流,我相信他使用的技术和方法真的有可能在医药市场掀起一场革命。Niven, what did you say to convince Carl Berg that your work on skin cream could possibly lead to a cure for cancer?尼文,你是怎样让卡尔o伯格相信,你那款护肤产品上有可能治愈癌症?Niven Narain: When I met with Carl we were aligned philosophically that there has to be a better way to create a more efficient healthcare system – one that really matches the right patients to the right drugs in a very precise manner. So Carl supported taking this concept to the next level. Instead of treating humans with chemicals, that are screened to become drugs, we actually started with human tissue samples and work to understand the biology and develop drugs based on that. Using AI [artificial intelligence] instead of hypotheses.尼文o纳雷因:当我见到卡尔时,我们原则上同意,肯定有办法建立一个更高效的医疗系统,它能够以非常精确的方式,将病人与正确的药物进行匹配。卡尔持我们将这个理念引向深入。我们不是利用筛选过的化学制品治疗病人,而是从人体的细胞样本入手去了解人体生物学,然后据此研发药物的。我们使用的是人工智能,而不是各种假设。How exactly does artificial intelligence come into play here?人工智能究竟在这个过程中起了什么样的作用?NN: When you start with a hypothesis, you are dismissing a lot of other areas that might actually have an impact on whatever you are trying to figure out. How many times do we see drugs get to late stage trials and fail because the early science either wasn’t robust enough or focused on the wrong target?尼文o纳雷因:如果你从一个假设入手,你就排除了很多其他可能产生真正效果的领域。有多少次药物在晚期测试的失败,是因为它的早期科研不够扎实,或是选择了错误的靶标?At Berg, we use AI to create over 14 trillion data points on only one tissue sample. It is actually humanly impossible to go through all this data and use the traditional hypothesis inference model to glean any value out of all of it. So early on when we built what we call an interrogative biology platform using AI to go through all that data. AI is actually able to take all the information from the patient’s biology, clinical samples, and demographics and really categorize which ones are similar and which ones are different and then stratify those in a way that helps us understand the difference between the healthy and diseased.在伯格公司,我们只针对一个组织样本就建立了超过14万亿个数据点。无论是使用人力,还是使用传统的推理假设模型,要想从所有这些数据中摘取有价值的信息,都是不可能的。所以当我们构建我们所称的疑问型生物平台时,我们使用了人工智能来分析所有数据。人工智能可以从病人的生物数据、临床样本和人口统计资料中摘取所有的信息,并且可以根据类似性和差异性进行分类和分层,从而帮助我们了解健康细胞和病变细胞之间的差异。Fourteen trillion data points sounds like information overload.14万亿个数据点听起来有点超负荷的感觉。NN: So there are two components: the upfront biological and there is something called omics. We go much deeper than just analyzing the genome, we look at all the genes in that tissue sample, all the proteins, metabolites, lipids, patients records, demographics, age, sex, gender, etc. We combine the 30,000 genes in the body with about 60,000 proteins and a few hundred lipids, metabolites. Then we take those components and subject them to high order mathematic algorithm that essentially learns, uses machine learning, to learn the various associations and correlations.尼文o纳雷因:所以它有两个组成部分:首先是生物信息,然后还有所谓的“组学”。我们不仅仅是分析基因组,而是研究一个组织样本的所有基因、蛋白质、代谢分子、脂质、病历记录、人口统计学资料、年龄、性别等等信息。我们把人体的3万个基因与6万种蛋白蛋和几千种脂质、代谢分子的信息综合起来,然后把这些成分用具有机器学习功能的高阶数学算法进行计算,以了解它们的各种关联性和相关性。Omics – it’s a fairly new term. It means you’re going beyond just the genome. It means all the omics – proteomics, metabolomics, and proteins. So we may be born with 30,000 genes, and those genes were born with certain mutations, but that’s not the end of the story. You live in New York City, you are exposed to different things in the environment, your diet is different than someone who lives in Alabama and your sleeping habits are different from some who lives in Utah. We believe all of these things have to be put together to tell the whole story of your omics – the full profile of you.组学是一个相对较新的术语,它意味着你不能仅仅盯着基因组,而是所有的“组”——比如蛋白质组、代谢组等等。虽然可能我们出生就带着3万个基因,而且这些基因可能还有某些天生的突变,但这并不是故事的结尾。你住在纽约市,暴露在环境中的不同物质里,你的饮食与阿拉巴马州的某个人不一样,你的睡眠习惯也与犹他州的某个人不一样。所以我们认为,这些东西应该综合起来,才能完整描绘你的“组学”,即你的整体资料。But how does all of this get us to a cure for anything? Seems like a bunch of number crunching.但是这些东西怎样让我们治病?看起来只是一堆数据分析而已。NN: I know you cover the airline industry pretty intently, so you are probably familiar with those airline route maps that show all the connections between hubs cities and destinations. So with the interrogative biology platform, the result of all that number crunching looks similar to a 3D version of those maps. But instead of those connections going between cities, they are going between genes and proteins. We then focus in on the big hubs and see what, if anything, is wrong. For example, in a system, if Dallas is in Oklahoma, obviously we know something is wrong, so the AI helps to push Dallas back into North Texas, and analyze what events happened in the biology to make that a normal process again. This is what we focus in on. The elements within the biology, the genes and proteins that made that a healthy process again.尼文o纳雷因:我知道你经常报道航空业,你可能很熟悉航空公司的路线图了,它们展示了各个枢纽城市和目的地之间的联系。在我们的疑问型生物平台上,所有这些数据分析的结果看起来就像3D版的航空路线图。但这些联系并不是城市与城市之间的,而是基因与蛋白质之间。然后我们把重点放在那些大的枢纽上,看看是否出了什么问题。比如如果达拉斯市是在俄克拉荷马州境内,我们都知道肯定有问题,这时人工智能就会把达拉斯推回北德克萨斯州,然后分析生物学中的哪些事件可以让人体重启正常的流程。这就是我们的研究重点,即生物的基本元素,以及能让健康流程重启的基因和蛋白质。Have you had any success using this platform in a real world situation?在真实世界中,你利用该平台取得过成功吗?NN: We are in clinical trials for a drug, BPM 31510, which we developed using the interrogative platform. The results we have seen so far have been very encouraging. The platform predicted that the more metabolic, the better the treatment will work. And that is exactly what we are seeing in patients for certain types of cancer. For example, we tested this on a patient who had bladder cancer. It was a very aggressive cancer, which failed to respond to all other therapies. We then put him on BPM 31510, which targeted the metabolism of the cancer cell, and by week 18, the tumor was completely gone.尼文o纳雷因:我们正在测试一款名叫BPM 31510的药物,它就是我们利用疑问型平台研发的。目前显示的结果非常令人鼓舞。该平台显示,新陈代谢越多,治疗就会越有效。根据我们对患有某些癌症的病人的观察,的确是这样。比如我们在一名患有膀胱癌的病人身上测试了这款药物,膀胱癌是一种非常凶险的癌症,几乎对所有疗法都没有反应。我们在他身上使用了BPM 31510,该药以癌细胞的新陈代谢为靶向,到了第18周,他的肿瘤已经完全消失了。Is this a patented process?这种疗法取得专利了吗?NN: We spent the lion’s share of the first six years building the platform, developing it into various areas of focus, getting our early drugs into clinical trials and diversifying the use of the technology. And we have filed over 500 patents around the world that govern this specific elevated biology. So we have patents on the biological process, on the mathematics, the informatics, on each individual candidate biomarker, and drug targets. It is a very robust IP portfolio.尼文o纳雷因:我们把前六年的大部分时间花在构建平台、研究各个重点领域、对早期药物进行临床实验和实现技术使用的多样化上。我们在全球已经注册了500多个专利。所以我们在生物学、数学、信息学上都有专利,对每个个体生物指标和药物靶标也都有专利。总之我们有着非常坚实的知识产权资产。Who are your competitors and where are you versus them in taking this process to the next level?你们的竞争对手是谁?与他们相比,你们在今后的发展中处于何种地位?NN: We get asked that fairly often. There are folks and entities that do pieces of what Berg does. They’re leading companies focused on proteins or analytics, but there isn’t one company we can identify or know of that has taken the biology, the omics, the clinical capability and put it all into an interrogative platform to really allow for a robust understanding of the biology to discover drugs in a different way. Also, we are allowing the data to generate hypotheses instead of hypotheses generating data, so it’s a really different approach. We are fairly unique in that respect – both from a technology, but also from a commercial standpoint.尼文o纳雷因:我们经常会被问到这个问题。也有一些人和机构在做我们正在做的事。他们是一些蛋白质和分析学上的顶尖公司,但我们目前还没有发现哪家公司把有关的生物学、组学研究和临床能力整合到一个疑问型平台上,来对人体产生坚实的理解,并以一种新的方式开发药物。另外,我们是用数据产生假设,而不是用假设产生数据,所以它是一种不同的方法。我们在这方面还是挺独特的——无论是在技术上还是商业上。Carl, for the last few years, you and Mitch Gray have been the only investors in Berg. How come?卡尔,过去几年里,你和米奇o格雷一直是伯格公司的唯一投资人,为什么会这样?CB: I’ve learned that if you get too many people in the early stages of these things, especially within something as risky as this was, basically you have failed because people get upset and they get worried when anything goes wrong. Through all the years that I have been doing this I can kind of roll with the punches. If something goes haywire it doesn’t upset me that much. I know that’s what you’re going to expect.卡尔o伯格:如果你在这些东西的早期阶段就让太多人进入,尤其是这个项目又有比较高的风险,那么你基本上肯定会失败,因为只要有什么事情出了差错,人们就会感到沮丧和担心。凭借多年的风投经历,我基本上已经处变不惊了。就算出了大乱子,我也不会那么沮丧。我知道那就是你需要预料到的。Are you y to open things up now?你们现在打算开放融资了吗?CB: We are definitely planning on doing some other things and bringing in other investors, but we thought we ought to get to a certain point before we did that. I think we are now very close to that point.卡尔o伯格:我们当然希望做些其他事情,并且引入新的投资人。但我们希望在此之前先达到某一个点。我认为我们离那个点已经非常近了。 /201505/375632南川区妇女医院在哪儿

自贡市第四人民医院去痣多少钱THIS season millions of Americans will celebrate with turkey on the table. The turkey is, after all, the native North American animal that Benjamin Franklin considered “a much more respectable bird” than the scavenging bald eagle. But while the eagle landed on the country’s Great Seal and the turkey gets pride of place at our holiday dinners, neither bird can claim to have changed American culture more than their lowly avian cousin, the chicken.这个季节,千百万美国人在庆祝节日时,餐桌上都摆着火鸡。毕竟,火鸡是北美本土的物种,本杰明·富兰克林(Benjamin Franklin)认为它与翻找腐肉的白头鹰相比,是一种“远更值得尊重的鸟”。尽管白头鹰登上了美国的国徽,火鸡也骄傲地成为节日餐桌上举国同享的美味,但这两种鸟对美国文化产生的影响,都比不上它们身份低微的表亲——家鸡。English settlers arriving at Jamestown in 1607 brought a flock of chickens that helped the struggling colony survive its first harsh winters, and the bird was on the Mayflower 13 years later. But the popularity of the Old World fowl soon faded, as turkey, goose, pigeon, duck and other tastier native game were plentiful.英国殖民者在1607年抵达詹姆斯敦的时候,带来了一群鸡。鸡帮助处境艰难的殖民地度过了最初几个凛冽的寒冬。13年后的“五月花号”(Mayflower)上也带了鸡。不过,由于火鸡、鹅、鸽、鸭及其他更美味的本地禽类琳琅满目,鸡这种旧大陆家禽变得不再那么受人关注。This proved a boon for enslaved Africans. Fearful that human chattel could buy their freedom from profits made by selling animals, the Virginia General Assembly in 1692 made it illegal for slaves to own horses, cattle or pigs. Poultry, though, wasn’t considered worth mentioning.不过,这对从非洲贩运来的奴隶倒是个好消息。由于担心作为私产的黑奴通过贩卖动物来赚钱赎身,弗吉尼亚议会(Virginia General Assembly)在1692年颁布法令,禁止黑奴拥有马、牛、猪。不过,他们认为家禽不值一提。This loophole offered an opportunity. Most slaves came from West Africa, where raising chickens had a long history. Soon, African-Americans in the colonial South — both enslaved and free — emerged as the “general chicken merchants,” wrote one white planter. At George Washington’s home, Mount Vernon, slaves were forbidden to raise ducks or geese, making the chicken “the only pleasure allowed to Negroes,” one visitor noted. The pleasure was not just culinary, but financial: In 1775, Thomas Jefferson paid two silver Spanish bits to slaves in exchange for three chickens. Such sales were common.这个法律漏洞提供了一个机会。许多黑奴来自非洲西部,在那里养鸡有很长的历史。很快,如一位白人种植园主所写到的,南方殖民地的非裔美国人,包括奴隶和自由人,就成了“常见的鸡贩”。在乔治·华盛顿(George Washington)的家弗农山庄(Mount Vernon),奴隶们被禁止养鸭子或鹅,一位来访者写道,于是鸡就成了“黑人获准拥有的唯一乐趣”。这种乐趣不仅涉及口腹,也涉及金钱。在1775年,托马斯·杰斐逊(Thomas Jefferson)花了两个西班牙雷亚尔,从黑奴手中买来了三只鸡。这样的交易颇为普遍。Black cooks were in a position to influence their masters’ choice of dishes, and they naturally favored the meat raised by their friends and relatives. One of the West African specialties that caught on among white people was chicken pieces fried in oil — the meal that now, around the world, is considered quintessentially American.黑人厨师可以影响主人对菜肴的选择,而他们自然更喜欢朋友和亲戚养殖的禽肉。油炸鸡块这道西非特色菜,就这样在白人当中受到了欢迎。而现在,这种吃法在全世界都被认为是典型的美国菜。Slaves laid the foundation for the American appetite for chicken, but it was the forced opening of China by the West in the 1840s that made the modern bird possible. American ships brought specimens of Asian chickens never seen in America. Breeders crossed the large and colorful exotics with their smaller but hardier Western counterparts to produce a bird that could lay more eggs and provide more meat. The results were famous varieties, like the Plymouth Rock and Rhode Island Red, that appeared just as the nation began to industrialize.黑奴为美国人热爱鸡肉的胃口奠定了基础,不过现代家鸡的问世,却要归结于1840年以后中国迫于西方压力而开关通商。由此,美国舰船带回了其本土前所未见的亚洲鸡。人们又将这些体格较大、色斑斓的鸡,与体格较小但适应力更强的西方鸡杂交,进而培育出了下蛋更多、产肉也更多的鸡种。其结果就是,在美国即将开始工业化时,普利茅斯石鸡(Plymouth Rock)和罗德岛红鸡(Rhode Island Red)这样的著名品种问世了。Still, chicken rearing in the ed States remained a small-scale family business; American meat-eating tended toward pork and beef, with chickens used mostly for eggs.不过,养鸡当时在美国仍然是一种小规模的家庭生意。美国人食肉的习惯也倾向于猪肉和牛肉,养鸡主要是为了下蛋。That began to change with the arrival of millions of Eastern European Jews, who relied on chicken as a meat source. By 1900, New York City boasted 1,500 kosher butcher shops, stocked by train cars filled with live chickens that arrived mainly from farms in the Midwest, where rural women, who ran much of the poultry business at the time, took advantage of the growing demand.随着数百万东欧犹太人的到来,这一点也开始发生转变,他们依赖鸡这种肉质来源。到1900年,纽约市有多达1500家犹太洁食(kosher)屠宰铺,出售的肉食主要来自中西部的农场出产,通过火车运来的活鸡。当时养殖禽类的生意主要由农村妇女经营,她们抓住时机回应了扩大的需求。Their market soon extended beyond immigrant Jews. Millions of people were leaving their Midwestern and Southern farms for factory jobs in the expanding cities in the North. Finding a reliable and cheap source of protein was critical. Pork and beef were expensive for urban shoppers, and there were not enough eggs produced in the ed States to satisfy their appetites. The chicken business started to take off.市场很快就拓展到了犹太移民社区之外。千百万人离开美国中西部和南部的农场,到不断扩张的北部城市寻找工厂的工作。要找到可靠廉价的蛋白质来源至关重要。猪肉和牛肉对城市里的消费者来说太昂贵了,而且美国出产的蛋也不足以满足美国人的胃口。于是养鸡产业开始飞速发展。World War I gave chickens another boost, when beef and pork stocks were diverted to the troops. Then, in 1923, an entrepreneurial Delaware woman named Celia Steele began sending the first broilers to New York, birthing a multibillion-dollar industry. For the first time, chickens began to be sold solely for their meat on a mass scale.第一次世界大战也给养鸡业带来了另一个助推,那时牛肉和猪肉储备转到了军队手中。1923年,特拉华州一位名叫西莉亚·斯蒂尔(Celia Steele)的女企业家,开始向纽约供应首批批量饲养的肉鸡,进而催生了一个价值数十亿美元的产业。这是鸡第一次因为它的肉,而被大规模出售。The rise of the chicken continued through the Great Depression, when chicken farming helped many farmers get by. Henry A. Wallace, a sometime vegetarian pacifist from Iowa who also served as Franklin D. Roosevelt’s agriculture secretary and vice president, argued that the chicken was the savior of poverty-stricken rural Americans. The company he helped found in the 1920s is now the world’s largest single producer of egg-laying hens. Finally, in the 1950s, engineers and scientists created a bird that could grow quickly with minimal feed — and the chicken we know today emerged.鸡的兴起一直贯穿了大萧条(Great Depression)时期,那时的养鸡产业帮助许多农户度过困境。富兰克林·D·罗斯福(Franklin D. Roosevelt)麾下的农业部长和副总统亨利·A·华莱士(Henry A. Wallace)一度食素,也是一名和平主义者。来自艾奥瓦州的华莱士认为,对于陷入贫困的美国农村,鸡是一个救星。他在1920年代帮助建立的公司,现在是世界上最大的蛋鸡饲养企业。最后在1950年代,工程师和科学家培育出了一种耗费饲料很少但增重很快的鸡。今天我们所知的鸡就是这时产生的。Today chicken is cheap, and it has become America’s favorite meat. In the land of the hamburger, we eat more of it than beef. And while we enjoy turkey at Thanksgiving, over the course of the year we will consume five times as much chicken.今天的鸡肉价格低廉,也已经成为美国人最喜欢的肉类。在这个汉堡包的国度,我们吃的鸡肉却比牛肉还多。尽管我们会在感恩节时享用火鸡,但全年消费鸡肉的总量却是火鸡的五倍。The bonanza of cheap meat and eggs has been a boon in many ways, but it has come at a largely hidden cost. Billions of chickens, both layers and broilers, live in vast warehouses locked behind fences and unprotected by federal regulations, which don’t consider poultry raised for food as animals. Then there are the low-paid workers who labor in the cold and dark of processing plants with high rates of injury, and the environmental degradation that sullies our waterways. And today’s industrial bird is a relatively tasteless food that we must relentlessly flavor with sauces, marinades and rubs.廉价肉蛋的丰富供应,在很多方面都是好事,但其中也存在常常不为人知的成本。数十亿只肉鸡和蛋鸡都饲养在巨大的仓库里,锁在笼子里,不受联邦法规的保障,因为联邦法规不把食用禽类视为动物。此外,还有薪水微薄的工人,他们在冰冷阴暗的加工厂里劳作,工伤率极高,相应的环境影响也污染了我们的河道。今天工业饲养的肉禽比较寡淡无味,所以我们必须要极力腌渍、蘸酱汁、撒调料。So as we celebrate and give thanks this season, take a moment to consider the lowly chicken, and how its story and that of our country are so deeply entwined. The bird that gets little respect is the creature that has given us more than we know.所以,我们在这个时节表达感谢时,请花些时间想一想身份低微的鸡,也考虑一下鸡肉的历史与这个国家的历史联系多么紧密。这种极少受人尊重的家禽,为我们做出了很多贡献,可我们却知之甚少。 /201412/345442渝北区人民医院是国家医院吗 You know that pleading “middle-age sp” isno longera viable option when you can “pinch a foot”.当你能夹住一只脚的时候,就能检测你是不是中年体型了。 /201505/373710重庆双眼皮手术 多少钱

开州区妇幼保健医院预约电话 重庆市新桥做整形好吗重庆哪个医院眼科好

重医附二院激光去掉雀斑多少钱
重医附二院是正规的
武隆县治疗白瓷娃娃多少钱88生活
武隆县脸部去痣价格
搜索知识合川区妇幼保健院好么
重庆西郊医院周日上班吗
重庆市肿瘤医院去疤多少钱
长寿区妇幼保健院门诊部39共享重庆医科大学附属儿童医院是私立还是公立的?
120问答渝北区妙桃隆胸假体多少钱百姓时讯
(责任编辑:图王)
 
五大发展理念

龙江会客厅

重庆星辰整形是国有的吗
四川省好的瘦小腿整形医院是哪家 重庆市新桥贵不贵京东媒体 [详细]
重庆激光去痣多少钱一颗
泸州丰唇术 重庆切开法双眼皮手术价格多少钱 [详细]
重庆隆鼻专家
重庆星宸医学美容医院专家预约 爱问活动永川区激光祛胎记多少钱康面诊 [详细]
大渡口区中医院收费怎么样
最新知识酉阳土家族苗族自治县做激光脱毛多少钱 荣昌区抽脂多少钱QQ爱问重庆正规医院激光脱毛有哪些 [详细]